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Abstract. In the deregulated Power Market scenario, due to liberalized market 
structure and non-discriminatory open transmission access, the issue of 
congestion management and hence optimum use of transmission capacity, has 
become more crucial issue.. The pricing mechanism based on capacity 
allocation principle, to determine Locational Marginal Prices (LMP) can be 
proved to be substantial, about efficient utilization of transmission grid and 
available generation capacity. Regarding Congestion Management the Optimal 
pricing strategy breaks the Nodal pricing into two components; one is 
Locational Marginal Price (LMP) and second is Nodal Congestion Price (NCP). 
Both of these are significant for market participants as system security 
parameter. In the emerging deregulated environment, the Artificial Intelligent 
techniques like ANN provide instant and accurate LMPs, which boost up the 
motive of spot power market. This paper presents Radial Basis Function Neural 
Network (RBFNN) for estimating LMPs.  
Since the test results are very accurate and awfully fast, these instant results can 
be directly floated to OASIS (open access same time information system) web 
site. The Market Participants willing to make transactions can access this 
information for any location of the market. The effectiveness of the proposed 
ANN has been established by comparing the testing results with those obtained 
with conventional Interior-Point OPF based method for a 6-bus test system 
having three generating units.  

 

Keywords: Locational Marginal Price, Nodal Price, Congestion Management, 
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Nomenclature 

iSC Supply bid of unit i  [$ / MWh]; 

jDC Demand bid of unit j  [$ / MWh]; 

iSP   Supply bid volume of unit i  [MW]; 
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jDP Demand bid volume of unit j [MW];  

iSP
max

Upper limit of power bid of unit i  [MW]; 

iSP
min

Lower limit of power bid of unit i  [MW]; 

jDP
max

Upper limit of demand bid of unit j [MW]; 

jDP
min

 Lower limit of demand bid of unit j [MW]; 

iGQ    Reactive power output of unit i  [MVar]; 

iGQ
min

Upper limit of Reactive power at unit i  [MVar]; 

iGQ
max

Lower limit of Reactive power at unit i  [MVar]; 

  iV       Voltage magnitude at unit i 
I          Set of indexes of generating units; 
J             Set of indexes of consumers 
B                 Set of indexes of network buses;  
N                 Set of indexes of transmission lines; 
LMP k           Locational Marginal Prices at bus k;  

iP    =    real power load at thi bus 

iQ   = reactive power load at thi bus 

1   Introduction 

With the advent of deregulation and policies of open access, allocation of scarce 
transmission resources has become a key factor for the efficient operation of 
electricity market. To ensure efficient use of transmission grid and generation 
resources by providing fast and correct economic signals, a spot price or nodal price 
theory has been developed [1]. To design a reasonable pricing structure of Power 
Systems and to provide an effective Congestion Management procedure nodal prices 
have been decomposed into a variety of parts corresponding to concerned factors such 
as generations, voltage limitations, transmission congestion and other constraints [2]. 

The optimal nodal prices [3] and [4] of electricity comprise of two components, 
one is price for cost of supplying next increment of electric power demand (based on 
Lagrangian Multiplier), at a specific node or bus, involving generation marginal cost 
and all power system equality constraints; other is price for congestion (i.e. shadow 
prices) considering inequality constraints only. The first component is called as 
Locational Marginal Price (LMP) and other is Nodal Congestion Price (NCP). A 
multi-objective optimal power flow approach to account for pricing system security 
through the use of voltage stability constraints is presented in [5]. In the deregulated 
electricity market, the market dispatch (unconstrained) stage is almost same for 
different market structures. These auction-based dispatches have no consideration for 
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transmission situations and the resulting price is the Market Clearing Price (MCP). In 
economic terms, the market clearing price is the point of intersection of supply and 
demand bid curves. However LMP reflects the security constrained pricing. The 
various pricing mechanisms for Congestion Management are discussed in [6]. The 
method of Nodal Pricing (LMP and NCP) is adopted by PJM, ISO-NE and ISO-NY. 
Nodal prices are not necessarily capped by the marginal cost of the marginal units and 
can be higher than the most expensive unit running, and can be negative, in 
constrained out areas [7]. When there are no congestion in the market, then the LMPs 
are same at all buses and equal to the marginal cost to serve load in control area. 
Nodal Pricing of Electricity is highly volatile under constrained transmission 
condition. Sensitivities of LMPs are explored with respect to power demands in [8]. 
[9] presents an AC-OPF model for investigating marginal cost pricing for real and 
reactive power flow. An overview of various congestion management methodologies 
are presented in [10]. Rather than computing spot prices, the thrust area is forecasting 
spot prices and Day-Ahead load demand [11] using Artificial Intelligent techniques. 
[12] presents a method that forecasts next-day electricity prices, based on fuzzy logic 
and neural networks. The RBFNN is proposed in [13-15] for handling various 
problems in Power System operation and control. 

This paper presents an RBFNN approach [13-15] for predicting LMPs in 
deregulated power market. Theoretically with enough RBF neurons, the RBFNN can 
realize zero error to all the training samples. Besides, the number of RBF neurons in 
the hidden layer can be determined during the parameter optimization process. The 
optimization process also speeds up the training process of neural network. These 
features make this ANN very attractive in practical use. 

 

2   Methodology 

2.1  The RBFNN Architecture 

The architecture of the proposed RBF neural network consists of three layers, the 
input layer, hidden layer and output layers with the hidden layer composed of RBF 
neurons. The nodes within each layer are fully connected to the previous layer as 
shown in Fig. 1. The input variables are assigned to each node in the input layer and 
are forwarded to the hidden layer directly, without weights. The hidden nodes contain 
the radial basis functions and are analogous to the sigmoid function commonly used 
in feed-forward multi-layer perceptron model. 
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Fig. 1. Radial Basis Function NN Model 

Most commonly used MLP models suffer from local minima and over fitting 
problems. The RBF neural networks have increasingly attracted interest for 
engineering applications due to their advantages over traditional MLP models, namely 
faster convergence, smaller extrapolation errors, optimized system complexity, 
minimized learning and recall times and higher reliability. They are highly promising 
for multivariable interpolation given irregularly positioned data points and provide 
good generalization ability with a minimum number of nodes to avoid unnecessarily 
lengthy calculations. The radial basis function is similar to the Gaussian density 
function, which is defined by a centre position and a width parameter. The width of 
the RBF unit controls the rate of decrease of function. The output of the thi  unit 
( )Xpai  in the hidden layer is given by: 

( ) [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑

=

r

j
ijijppi xxXa

1

22 /exp σ  (1) 

Where jix  is the centre of thi RBF unit for input variable j ,σi   is width of thi RBF 

unit and xjp is the thj variable of input pattern p. The connection between the hidden 
units and the output units are weighted sums as shown in Fig. 1. The output value oqp 
of the qth output node is given as: 

qop

H

i
iqiqp wXawo += ∑

=

)(
1

 (2) 

Where wqi is weight between thi RBF unit and qth output node and wqo is biasing 
term at qth output node. 

The parameter of the RBF units is determined in three steps of the training process. 
First of all some form of clustering algorithm explores the unit centres. Then the 
widths are calculated by a nearest neighbor method. Finally weights connecting the 
RBF units and the output units are determined using multiple regression techniques. 
Euclidean distance based clustering technique has been employed in this paper to 
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select the number of hidden (RBF) units and unit centres. The normalized input data 
are used for training of the RBF neural network. In this paper the dynamic version of 
RBFNN is used to make faster training. In this new RBFNN hidden nodes are altered 
until desired goal is reached. 

2.2   Locational Marginal Pricing  

The Locational Marginal Prices are the nodal prices, which are typically calculated as 
Lagrange multipliers associated with equality constraints, from the OPF solution [16]. 
For calculating these prices, the Pool Operator receives supplier bid and customer bid 
as bid plots. Fig. 2 shows bid plots for both supply as well as demand. Then Pool 
Operator determines the market clearing price (MCP) and a set of successful bidders 
on the basis of some auction mechanism. In the price assessment process, both 
optimal bidding strategy and auction mechanism play an important role. The 
intersection of supply and demand plots provides market clearing price and market 
clearing volume, as shown in Fig. 2 by Gm and Hm in $/ MWh and in MW 
respectively. The supply bid plot shows the minimum price at which a generator is 
willing to produce a certain amount of power, while demand bid plot shows the 
maximum price, which is accepted by customers to buy a certain amount of power. 

 
Fig. 2. Demand and Supply bid Plot 

For the sake of simplicity it is assumed here that supply and demand bid is a single 
price not complete plot. In power market security pricing field, OPF-based approach 
is basically a non-linear constrained Optimization problem. One crucial outcome of 
this optimization procedure is Locational Marginal Prices. This outcome in pool-
market operation is achieved through objective-function as maximization of  social 
benefit i.e. maximizing the generator’s income for their power production and 
simultaneously ensuring that consumers pay cheapest price for their power purchase. 
The OPF objective function is: 

∑∑
∈∈

−=
Jj

DD
Ii

SS jjii
PCPCGMin  (3) 

subject to following equalities and inequalities constraints. 
Power flow equations: 

0),,,( =θVQPf GG  (4) 

Power balance equations: 
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DDL
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Supply Bid Blocks: 

IiPPP
iii SSS ∈∀≤≤

maxmin
 (7) 

Demand Bid Blocks: 

JjPPP
jj DjDD ∈∀≤≤

maxmin
 (8) 

Reactive Power Generation Limit: 

IiQQQ
iii GGG ∈∀≤≤

maxmin
 (9) 

Voltage Security Limit: 

BkVVV
kk k ∈∀≤≤ maxmin  (10) 

Thermal Limit: 

max
),( mkmk IVI ≤θ  Nkm ∈∀ ),(  (11) 

The Lagrange function of the optimization problem (3) – (11) can be written as, 

),,,,( GDS
T QPPVfGMin δλ−=ℑ   

                                  ( )maxmaxmax sPSS
T

SP sPP −−− μ   

                 ( )minmin sPS
T

SP sP −− μ   

                                ( )maxmaxmax DPDD
T

DP sPP −−− μ   

               ( )minmin PDS
T

DP sP −− μ   

                               ( )maxmaxIm max mkImk
T

k sII −−− μ   

                             ( )maxmaxmax kmIkm
T
Ikm sII −−− μ   

68     Nirved Pandey S., Verma  S. and Srivastava L.



                               ( )maxmaxmax QGGG
T
QG sQQ −−− μ   

                               ( )minminmin QGGG
T
QG sQQ −−− μ   

                      ( )maxmaxmax V
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⎞
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i
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where λ and μ are Lagrange multipliers with respect to equality and inequality 
constraints. Here s is a non negativity slack variable. The Lagrange multiplier λ 
reflects the locational marginal cost price at each node considering all equality 
constraints. The optimization of (12) is satisfied by the KKT optimality condition: 

0)( =ℑ∇ zz μ  (13) 

Then by applying (13) in (12): 

iSiSiSii PPPSS CP
minmax

0 μμλ −+−==∂ℑ∂  (14) 

)tan(0
iiiii DDDDD QPCP φλλ ++−==∂ℑ∂   

                                                       
ii DD PP

minmax
μμ −+  (15) 

Thus the LMPs can be defined as, 

iSiSiiSi PPSPS CLMP
minmax

μμλ −+==  (16) 

iiiiDi DDDPD PPCLMP
minmax

μμλ −+==   

                                    )tan(
ii DDQ φλ−  (17) 

Thus by this classical approach, the LMPs at both supply and demand node are 
determined for the 6-bus system [5]. Furthermore, it is established that system 
congestion do significantly affect market bids and associated costs, hence still there is 
a need for a precise model for taking in account security constraints. In this way 
LMPs are always better to take into consideration than MCPs. Equation (19) and (20) 
provide LMPk i.e. LMPs at kth node in the given system for both supply and demand 
bids. 
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3   Training Algorithm for RBFNN 

Neural Network models are the trainable analytic tools that attempt to mimic the 
information-processing pattern in human brain. It has capabilities of learning 
generalization and fault tolerance, which make it suitable for on-line application 
environment among all other artificial intelligent techniques. The Radial Basis 
Function Neural Network (RBFNN) is proposed for providing LMPs at every node of 
the given 6-bus test system. The RBFNN can be designed in a fraction of time as 
compared with other design approaches for training standard feed-forward networks. 

The solution algorithm for Locational Marginal Pricing using RBFN is given 
below. 

(i) A large number of load patterns are generated randomly in wide range of load 
variation at each load bus. 

(ii) For each load case Locational Marginal Price at different buses is computed by 
classical IPM-OPF method.  

(iii) Real and Reactive loads at load buses i.e. bus no.4,5 and 6 are selected as input 
features for the RBF network.   

(iv) For training of the RBF network, initialize all the connection weights between 
hidden nodes and output nodes. 

(v) Compute the Gaussian function at the hidden node using equation (1) i.e. 

( ) [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑

=

r

j
ijijppi xxXa

1

22 /exp σ   

Where r is dimension of input vector. 
(vi) For the given values of loads at bus no 4,5 and 6, calculate the output of the 

RBFNN, which is locational marginal prices at all the six buses using equation 
(2) i.e. 

qop

H

i
iqiqp wXawo += ∑

=

)(
1

  

(vii) Calculate the Mean Squared Error ep for the pth input pattern using 

( )
2

1
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2
1 ∑

=
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q
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e  (18) 

          Here tqp is the target value at qth neuron of output layer    for thp pattern and 
NO is    the number of neurons in output layer. 

(viii) Repeat steps (v) to (viii) for all the 240 training patterns comprising real and 
reactive power demand at bus no. 4, 5, 6 and locational marginal prices at all six 
buses. 

(ix) Calculate the error function Ek using equation, 

( )
2
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maxmax
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2
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pK ot
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 (19) 
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         Where,  pmax
 is the total  number of training patterns which is 240 for this 

application of estimating locational marginal prices all the nodes/buses of the 
given system i.e. six-bus test system. 

(x) Update the connection weights using equation 

( ) ( ) )(1 KwKwKw qiqiqi Δ+=+  (20) 

Where 

)1(..).()(
max

1

−Δ+=Δ ∑
=

KwAKKw qi

p

p
piqpqi αδη  

(21) 

         And                         qqq OT −=δ  (22) 

       where, η (K) is learning rate or adaptive size at Kth iteration and δq is the error         
signal for unit q and ∝is  momentum term and Tq , Oq are target and actual 
output respectively. 

(xi) The procedure is continued till the error becomes negligible. 
(xii) This trained RBFNN model is tested for previously unseen load patterns for 

estimating LMPs all the buses of the system. 

4   Results and Discussion 

Though the trained ANN has provided the accurate results (i.e. LMPs at each node) 
for all the 60 testing patterns, due to limited space, testing results for only 15 patterns 
are given in Table 1. This table also shows the percentage error as a performance 
index for proposed RBFNN. The actual and target output for all 60 load patterns are 
shown in Fig. 3. 
From this figure it is clear that RBFNN has achieved the target within permissible 
accuracy limits (can be seen as overlapped display). It can be noted from Table 1, that 
the maximum percentage error for LMP1, LMP2, LMP3, LMP4, LMP5 and LMP6 are 
0.267, 0.304, 0.328, 0.319, 0.315 and 0.340 respectively. For same ANN structure and 
same learning rate of 0.30 the performance of RBFNN is compared with a BPMLP 
model. The rms errors for RBFNN and a BPMLP model were obtained as 0.0867 pu 
and 0.1039 pu respectively, which clearly shows its superiority over other BPMLP 
models 

It is evident from Fig. 3, that LMP at node-1 ranges from 9.0 – 9.85 $/ MWh, LMP 
at node-2 ranges from 8.85 – 9.85 $/ MWh, LMP at node-3 ranges from 9 – 10 $/ 
MWh, LMP at node-4 ranges from 9.5 – 10.5 $/ MWh, LMP at node-5 ranges from 
9.6 – 10.4 $/ MWh and LMP at node-6 ranges from 9.2 – 10.2 $/ MWh. The different 
values. of LMPs at nodes show the presence of congestion in the system. 
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Fig. 3. Testing Performance of RBFNN for all 60 patterns. 

 

5    Conclusion 

A novel approach using radial basis function neural network is proposed, for 
estimating LMPs at both supply and demand nodes in the system. During testing 
phase the trained neural network furnished results within acceptable accuracy limits 
for previously unseen load patterns. The floating of this significant information of 
LMPs on OASIS website, would enable the Market Participants to peruse their 
transactions. 

The MCPs do not have any hold on generation and transmission constraints. On the 
other hand LMPs are calculated as Lagrangian Multipliers (or dual variables) 
associated with OPF framework and are substantially affected by changes in 
demands, supply and transmission constraints that’s why constitute essential 
information in an Electricity Market. The AI techniques are now admired specifically 
for spot pricing in budding deregulated power market and establishing economic 
signals among Market Participants. 
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Table  1. Testing Performance of Trained RBFNN for Locational Marginal Pricing 

NP TPD TQD METHOD LMP1 LMP2 LMP3 LMP4 LMP5 LMP6 
CLASSICAL 9.700 9.660 9.827 10.320 10.366 10.128 

BY ANN 9.726 9.677 9.842 10.335 10.394 10.140 1 2.966 2.013 
% Error 0.267 0.181 0.157 0.147 0.270 0.114 

CLASSICAL 9.030 8.987 9.148 9.575 9.664 9.429 
BY ANN 9.033 8.993 9.158 9.576 9.667 9.442 2 2.796 1.897 
% Error 0.035 0.070 0.111 0.012 0.032 0.133 

CLASSICAL 9.559 9.509 9.670 10.157 10.205 9.964 
BY ANN 9.574 9.524 9.686 10.169 10.233 9.979 3 2.945 1.998 
% Error 0.158 0.155 0.164 0.119 0.270 0.149 

CLASSICAL 9.530 9.478 9.638 10.116 10.194 9.929 
BY ANN 9.529 9.476 9.637 10.115 10.188 9.928 4 2.923 1.983 
% Error 0.013 0.016 0.015 0.014 0.055 0.015 

CLASSICAL 9.543 9.492 9.653 10.135 10.199 9.945 
BY ANN 9.531 9.484 9.646 10.126 10.189 9.939 5 2.947 2.000 
% Error 0.123 0.089 0.075 0.089 0.100 0.063 

CLASSICAL 9.700 9.670 9.839 10.330 10.378 10.141 
BY ANN 9.706 9.678 9.847 10.339 10.386 10.150 6 3.027 2.054 
% Error 0.061 0.080 0.082 0.089 0.079 0.090 

CLASSICAL 9.024 8.983 9.146 9.567 9.657 9.428 
BY ANN 9.039 8.999 9.165 9.583 9.673 9.449 7 2.787 1.891 
% Error 0.167 0.182 0.210 0.163 0.168 0.224 

CLASSICAL 9.021 8.981 9.146 9.563 9.654 9.428 
BY ANN 9.043 9.000 9.161 9.590 9.679 9.441 8 2.836 1.924 
% Error 0.243 0.210 0.164 0.282 0.259 0.141 

CLASSICAL 9.700 9.676 9.846 10.336 10.386 10.150 
BY ANN 9.706 9.678 9.847 10.339 10.386 10.150 9 3.027 2.054 
% Error 0.061 0.018 0.010 0.031 0.001 0.001 

CLASSICAL 9.562 9.512 9.674 10.162 10.206 9.968 
BY ANN 9.574 9.527 9.689 10.173 10.225 9.984 10 2.980 2.022 
% Error 0.126 0.160 0.160 0.111 0.190 0.159 

CLASSICAL 9.700 9.676 9.847 10.336 10.386 10.150 
BY ANN 9.680 9.647 9.815 10.303 10.353 10.115 11 3.016 2.047 
% Error 0.205 0.304 0.328 0.319 0.315 0.340 

CLASSICAL 9.534 9.482 9.643 10.121 10.195 9.933 
BY ANN 9.551 9.501 9.663 10.145 10.205 9.956 12 2.948 2.000 
% Error 0.174 0.197 0.206 0.232 0.094 0.227 

CLASSICAL 9.551 9.500 9.661 10.146 10.202 9.954 
BY ANN 9.551 9.501 9.663 10.145 10.205 9.956 13 2.949 2.001 
% Error 0.004 0.007 0.019 0.015 0.026 0.016 

CLASSICAL 9.530 9.478 9.638 10.116 10.194 9.929 
BY ANN 9.529 9.476 9.637 10.115 10.188 9.928 14 2.923 1.983 
% Error 0.013 0.016 0.015 0.014 0.055 0.015 

CLASSICAL 9.543 9.492 9.653 10.135 10.199 9.945 
BY ANN 9.531 9.484 9.646 10.126 10.189 9.939 15 2.947 2.000 
% Error 0.123 0.089 0.075 0.089 0.100 0.063 
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