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Abstract. In the deregulated Power Market scenario, due to liberalized market
structure and non-discriminatory open transmission access, the issue of
congestion management and hence optimum use of transmission capacity, has
become more crucial issue.. The pricing mechanism based on capacity
allocation principle, to determine Locational Marginal Prices (LMP) can be
proved to be substantial, about efficient utilization of transmission grid and
available generation capacity. Regarding Congestion Management the Optimal
pricing strategy breaks the Nodal pricing into two components; one is
Locational Marginal Price (LMP) and second is Nodal Congestion Price (NCP).
Both of these are significant for market participants as system security
parameter. In the emerging deregulated environment, the Artificial Intelligent
techniques like ANN provide instant and accurate LMPs, which boost up the
motive of spot power market. This paper presents Radial Basis Function Neural
Network (RBFNN) for estimating LMPs.

Since the test results are very accurate and awfully fast, these instant results can
be directly floated to OASIS (open access same time information system) web
site. The Market Participants willing to make transactions can access this
information for any location of the market. The effectiveness of the proposed
ANN has been established by comparing the testing results with those obtained
with conventional Interior-Point OPF based method for a 6-bus test system
having three generating units.

Keywords: Locational Marginal Price, Nodal Price, Congestion Management,
Radial basis function (RBF) neural network.

Nomenclature

Cs  Supply bid of unit i [$/ MWh];

i

C, Demand bid of unit; [$/MWh];
P Supply bid volume of unit i [MW];
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P, Demand bid volume of unit j [MW];

P ~Upper limit of power bid of unit i [MW];

ma

P;  Lower limit of power bid of unit i [MW];

min ;

P, Upper limit of demand bid of unit j [MW];

max ;
J

P,  Lower limit of demand bid of unit j [MW];

min ;

QG[ Reactive power output of unit i [MVar];

o

0.  Lower limit of Reactive power at unit i [MVar];

Upper limit of Reactive power at unit i [MVar];

min ;

V., Voltage magnitude at unit i
1 Set of indexes of generating units;
J Set of indexes of consumers
B Set of indexes of network buses;
N Set of indexes of transmission lines;
LMP Locational Marginal Prices at bus k;
P, = real power load at i” bus
O, =reactive power load at i " bus

1 Introduction

With the advent of deregulation and policies of open access, allocation of scarce
transmission resources has become a key factor for the efficient operation of
electricity market. To ensure efficient use of transmission grid and generation
resources by providing fast and correct economic signals, a spot price or nodal price
theory has been developed [1]. To design a reasonable pricing structure of Power
Systems and to provide an effective Congestion Management procedure nodal prices
have been decomposed into a variety of parts corresponding to concerned factors such
as generations, voltage limitations, transmission congestion and other constraints [2].
The optimal nodal prices [3] and [4] of electricity comprise of two components,
one is price for cost of supplying next increment of electric power demand (based on
Lagrangian Multiplier), at a specific node or bus, involving generation marginal cost
and all power system equality constraints; other is price for congestion (i.e. shadow
prices) considering inequality constraints only. The first component is called as
Locational Marginal Price (LMP) and other is Nodal Congestion Price (NCP). A
multi-objective optimal power flow approach to account for pricing system security
through the use of voltage stability constraints is presented in [S]. In the deregulated
electricity market, the market dispatch (unconstrained) stage is almost same for
different market structures. These auction-based dispatches have no consideration for
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transmission situations and the resulting price is the Market Clearing Price (MCP). In
economic terms, the market clearing price is the point of intersection of supply and
demand bid curves. However LMP reflects the security constrained pricing. The
various pricing mechanisms for Congestion Management are discussed in [6]. The
method of Nodal Pricing (LMP and NCP) is adopted by PJM, ISO-NE and ISO-NY.
Nodal prices are not necessarily capped by the marginal cost of the marginal units and
can be higher than the most expensive unit running, and can be negative, in
constrained out areas [7]. When there are no congestion in the market, then the LMPs
are same at all buses and equal to the marginal cost to serve load in control area.
Nodal Pricing of Electricity is highly volatile under constrained transmission
condition. Sensitivities of LMPs are explored with respect to power demands in [8].
[9] presents an AC-OPF model for investigating marginal cost pricing for real and
reactive power flow. An overview of various congestion management methodologies
are presented in [10]. Rather than computing spot prices, the thrust area is forecasting
spot prices and Day-Ahead load demand [11] using Artificial Intelligent techniques.
[12] presents a method that forecasts next-day electricity prices, based on fuzzy logic
and neural networks. The RBFNN is proposed in [13-15] for handling various
problems in Power System operation and control.

This paper presents an RBFNN approach [13-15] for predicting LMPs in
deregulated power market. Theoretically with enough RBF neurons, the RBFNN can
realize zero error to all the training samples. Besides, the number of RBF neurons in
the hidden layer can be determined during the parameter optimization process. The
optimization process also speeds up the training process of neural network. These
features make this ANN very attractive in practical use.

2 Methodology

2.1 The RBFNN Architecture

The architecture of the proposed RBF neural network consists of three layers, the
input layer, hidden layer and output layers with the hidden layer composed of RBF
neurons. The nodes within each layer are fully connected to the previous layer as
shown in Fig. 1. The input variables are assigned to each node in the input layer and
are forwarded to the hidden layer directly, without weights. The hidden nodes contain
the radial basis functions and are analogous to the sigmoid function commonly used
in feed-forward multi-layer perceptron model.
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Fig. 1. Radial Basis Function NN Model

Most commonly used MLP models suffer from local minima and over fitting
problems. The RBF neural networks have increasingly attracted interest for
engineering applications due to their advantages over traditional MLP models, namely
faster convergence, smaller extrapolation errors, optimized system complexity,
minimized learning and recall times and higher reliability. They are highly promising
for multivariable interpolation given irregularly positioned data points and provide
good generalization ability with a minimum number of nodes to avoid unnecessarily
lengthy calculations. The radial basis function is similar to the Gaussian density
function, which is defined by a centre position and a width parameter. The width of

the RBF unit controls the rate of decrease of function. The output of the i™ unit
a, (Xp) in the hidden layer is given by:

O e o e ®

Where X ; is the centre of i " RBF unit for input variable j ,o; is width of i RBF

unit and x;, is the j ™ variable of input pattern p. The connection between the hidden

units and the output units are weighted sums as shown in Fig. 1. The output value o,

of the ¢" output node is given as:

2)

H
04 = Z wqiai(Xp)-# W
i=1

Where w,; is weight between I " RBF unit and g™ output node and W, 18 biasing
term at ¢ output node.

The parameter of the RBF units is determined in three steps of the training process.
First of all some form of clustering algorithm explores the unit centres. Then the
widths are calculated by a nearest neighbor method. Finally weights connecting the
RBF units and the output units are determined using multiple regression techniques.
Euclidean distance based clustering technique has been employed in this paper to
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select the number of hidden (RBF) units and unit centres. The normalized input data
are used for training of the RBF neural network. In this paper the dynamic version of
RBFNN is used to make faster training. In this new RBFNN hidden nodes are altered
until desired goal is reached.

2.2 Locational Marginal Pricing

The Locational Marginal Prices are the nodal prices, which are typically calculated as
Lagrange multipliers associated with equality constraints, from the OPF solution [16].
For calculating these prices, the Pool Operator receives supplier bid and customer bid
as bid plots. Fig. 2 shows bid plots for both supply as well as demand. Then Pool
Operator determines the market clearing price (MCP) and a set of successful bidders
on the basis of some auction mechanism. In the price assessment process, both
optimal bidding strategy and auction mechanism play an important role. The
intersection of supply and demand plots provides market clearing price and market
clearing volume, as shown in Fig. 2 by G, and H,, in $/ MWh and in MW
respectively. The supply bid plot shows the minimum price at which a generator is
willing to produce a certain amount of power, while demand bid plot shows the
maximum price, which is accepted by customers to buy a certain amount of power.

z
ol
-]
Supply Bid Curve Plot
Gy poe Demf.nd Bid Plot

H,, Power (__l\lW)

Fig. 2. Demand and Supply bid Plot

For the sake of simplicity it is assumed here that supply and demand bid is a single
price not complete plot. In power market security pricing field, OPF-based approach
is basically a non-linear constrained Optimization problem. One crucial outcome of
this optimization procedure is Locational Marginal Prices. This outcome in pool-
market operation is achieved through objective-function as maximization of social
benefit i.e. maximizing the generator’s income for their power production and
simultaneously ensuring that consumers pay cheapest price for their power purchase.
The OPF objective function is:

Min G =3 Cg Py —->C, P, 3)
iel jedJ
subject to following equalities and inequalities constraints.
Power flow equations:

f(P;,0:.V,0)=0 “4)

Power balance equations:
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/cZZ(PG,,,+PS,)_Z(PL,1,+PD/)

iel jeJ
(=20, -2(0, +0,)tang, where VkeB
iel jeJ
Supply Bid Blocks:
P, <P, <P, Viel

Demand Bid Blocks:
P, < PD;' <P, VieJ

min j P max j

Reactive Power Generation Limit:
0 p <Q ¢ S 0 G Viel

Voltage Security Limit:
V. . <V,<V.__ VkeB

min ;. max
Thermal Limit:

l,,@V)<I, V(mk)eN

3

(6)

(7

)

(€)

(10)

(11)

The Lagrange function of the optimization problem (3) — (11) can be written as,

Min 3 =G-2" f(5,V,P,P,.0,)
_ﬂ;SmaX (PSmax _PS _SPsmax)

T
—Hps  \ Py —5p, mm)

.
(

T
- /uPDm PDmax - SPDmax)

T

~Hpp,, ( Py SPDmm)
T

= Himk (Imax Slmkmax)

max

T
- /’llkm max (Imax - [km - S]kmmax)
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T
— Hog ( omx — Yo _SQGmax)

T
~ HoGmin ( ¢ — Q6min — SQGmin)

- :u;max (Vmax -V - SVmax)

Sz

where 1 and u are Lagrange multipliers with respect to equality and inequality
constraints. Here s is a non negativity slack variable. The Lagrange multiplier A
reflects the locational marginal cost price at each node considering all equality
constraints. The optimization of (12) is satisfied by the KKT optimality condition:

V.3,(:)=0 (13)
Then by applying (13) in (12):
83/aPSl:():Cvsl_ﬂ"DS +lLlPSmax-_lLlPSmin- (14)
03/oP, =0=—C ,+AP ,+20 , tan( ,, )

+uP, —uP, (15)

Thus the LMPs can be defined as,
LMPS,-:ZPSI. :CS,- +u PSmax,_’uPSmini (16)

LMP, =4p, =Cp +uP, —pP,

max ; min ;

- AQ Ditan(¢ D,.) (17)

Thus by this classical approach, the LMPs at both supply and demand node are
determined for the 6-bus system [5]. Furthermore, it is established that system
congestion do significantly affect market bids and associated costs, hence still there is
a need for a precise model for taking in account security constraints. In this way
LMPs are always better to take into consideration than MCPs. Equation (19) and (20)
provide LMP i.e. LMPs at k™ node in the given system for both supply and demand
bids.
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3 Training Algorithm for RBFNN

Neural Network models are the trainable analytic tools that attempt to mimic the
information-processing pattern in human brain. It has capabilities of learning
generalization and fault tolerance, which make it suitable for on-line application
environment among all other artificial intelligent techniques. The Radial Basis
Function Neural Network (RBFNN) is proposed for providing LMPs at every node of
the given 6-bus test system. The RBFNN can be designed in a fraction of time as
compared with other design approaches for training standard feed-forward networks.

The solution algorithm for Locational Marginal Pricing using RBFN is given
below.

(i) A large number of load patterns are generated randomly in wide range of load
variation at each load bus.

(i1) For each load case Locational Marginal Price at different buses is computed by
classical IPM-OPF method.

(iii) Real and Reactive loads at load buses i.e. bus no.4,5 and 6 are selected as input
features for the RBF network.

(iv) For training of the RBF network, initialize all the connection weights between
hidden nodes and output nodes.

(v) Compute the Gaussian function at the hidden node using equation (1) i.e.

a,(Xp): €Xp [_ Z [x_/p - Xy ]2 /‘7,‘2]
j=1
Where r is dimension of input vector.
(vi) For the given values of loads at bus no 4,5 and 6, calculate the output of the
RBFNN, which is locational marginal prices at all the six buses using equation
2)i.e.

H

qu =z quai(Xp)+Wq(1

i=1
(vii) Calculate the Mean Squared Error e, for the p™ input pattern using

1 | X 2 (18)
€p = ?'quzl (tq/? ) )

Here 1,, is the target value at ¢" neuron of output layer  for p’h pattern and

NO is the number of neurons in output layer.

(viii) Repeat steps (v) to (viii) for all the 240 training patterns comprising real and
reactive power demand at bus no. 4, 5, 6 and locational marginal prices at all six
buses.

(ix) Calculate the error function E; using equation,

pm

P 1

NO
Ex = Z €p :%Z TZ (tqp _"qp)

p=1 p=1 g=1

’ (19)
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Where, p™ is the total number of training patterns which is 240 for this
application of estimating locational marginal prices all the nodes/buses of the
given system i.e. six-bus test system.

(x) Update the connection weights using equation

wqi(K+1):wqi(K)+ Awqi(K) (20)
Where
= (1)
Aw, (K)=70(K). Y 8,y Ay +ahwy, (K =1)
p=1
And o =7 - 0O (22)

where, 7 (K) is learning rate or adaptive size at K" iteration and 0, is the error

signal for unit ¢ and ocis momentum term and 7, , O, are target and actual
output respectively.

(xi) The procedure is continued till the error becomes negligible.

(xii) This trained RBFNN model is tested for previously unseen load patterns for
estimating LMPs all the buses of the system.

4 Results and Discussion

Though the trained ANN has provided the accurate results (i.e. LMPs at each node)
for all the 60 testing patterns, due to limited space, testing results for only 15 patterns
are given in Table 1. This table also shows the percentage error as a performance
index for proposed RBFNN. The actual and target output for all 60 load patterns are
shown in Fig. 3.
From this figure it is clear that RBFNN has achieved the target within permissible
accuracy limits (can be seen as overlapped display). It can be noted from Table 1, that
the maximum percentage error for LMP,, LMP2, LMP3, LMP,, LMPs and LMP; are
0.267, 0.304, 0.328, 0.319, 0.315 and 0.340 respectively. For same ANN structure and
same learning rate of 0.30 the performance of RBFNN is compared with a BPMLP
model. The rms errors for RBFNN and a BPMLP model were obtained as 0.0867 pu
and 0.1039 pu respectively, which clearly shows its superiority over other BPMLP
models

It is evident from Fig. 3, that LMP at node-1 ranges from 9.0 — 9.85 $/ MWh, LMP
at node-2 ranges from 8.85 — 9.85 $/ MWh, LMP at node-3 ranges from 9 — 10 $/
MWh, LMP at node-4 ranges from 9.5 — 10.5 $/ MWh, LMP at node-5 ranges from
9.6 —10.4 $/ MWh and LMP at node-6 ranges from 9.2 — 10.2 $/ MWh. The different
values. of LMPs at nodes show the presence of congestion in the system.
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Fig. 3. Testing Performance of RBFNN for all 60 patterns.

5 Conclusion

A novel approach using radial basis function neural network is proposed, for
estimating LMPs at both supply and demand nodes in the system. During testing
phase the trained neural network furnished results within acceptable accuracy limits
for previously unseen load patterns. The floating of this significant information of
LMPs on OASIS website, would enable the Market Participants to peruse their
transactions.

The MCPs do not have any hold on generation and transmission constraints. On the
other hand LMPs are calculated as Lagrangian Multipliers (or dual variables)
associated with OPF framework and are substantially affected by changes in
demands, supply and transmission constraints that’s why constitute essential
information in an Electricity Market. The Al techniques are now admired specifically
for spot pricing in budding deregulated power market and establishing economic
signals among Market Participants.
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Table 1. Testing Performance of Trained RBFNN for Locational Marginal Pricing

NPl TPD | TQD METHOD | LMP1 | LMP2 | LMP3 | LMP4 LMP5 LMP6
CLASSICAL| 9.700 | 9.660 | 9.827 10.320 10.366 10.128
1 2.966 | 2.013 BY ANN 9.726 | 9.677 | 9.842 10.335 10.394 10.140
% Error 0.267 | 0.181 | 0.157 0.147 0.270 0.114

CLASSICAL| 9.030 | 8.987 | 9.148 9.575 9.664 9.429

2| 279 | 1.897 BY ANN 9.033 | 8.993 | 9.158 9.576 9.667 9.442
% Error 0.035 | 0.070 | 0.111 0.012 0.032 0.133

CLASSICAL| 9.559 | 9.509 | 9.670 10.157 10.205 9.964

3| 2.945| 1.998 BY ANN 9.574 | 9.524 | 9.686 10.169 10.233 9.979
% Error 0.158 | 0.155 | 0.164 0.119 0.270 0.149

CLASSICAL| 9.530 | 9.478 | 9.638 10.116 10.194 9.929

4| 2923 | 1.983 BY ANN 9.529 | 9.476 | 9.637 10.115 10.188 9.928
% Error 0.013 | 0.016 | 0.015 0.014 0.055 0.015

CLASSICAL| 9.543 | 9.492 | 9.653 10.135 10.199 9.945

5| 2947 2.000 BY ANN 9.531 | 9.484 | 9.646 10.126 10.189 9.939
% Error 0.123 | 0.089 | 0.075 0.089 0.100 0.063

CLASSICAL| 9.700 | 9.670 | 9.839 10.330 10.378 10.141
6| 3.027| 2.054 BY ANN 9.706 | 9.678 | 9.847 10.339 10.386 10.150
% Error 0.061 | 0.080 | 0.082 0.089 0.079 0.090

CLASSICAL| 9.024 | 8.983 | 9.146 9.567 9.657 9.428

71 2.787| 1.891 BY ANN 9.039 | 8.999 | 9.165 9.583 9.673 9.449
% Error 0.167 | 0.182 | 0.210 0.163 0.168 0.224

CLASSICAL| 9.021 | 8.981 | 9.146 9.563 9.654 9.428

8| 2836 | 1924 BY ANN 9.043 | 9.000 | 9.161 9.590 9.679 9.441
% Error 0.243 | 0.210 | 0.164 0.282 0.259 0.141

CLASSICAL| 9.700 | 9.676 | 9.846 10.336 10.386 10.150

91 3.027| 2.054 BY ANN 9.706 | 9.678 | 9.847 10.339 10.386 10.150
% Error 0.061 | 0.018 | 0.010 0.031 0.001 0.001

CLASSICAL| 9.562 | 9.512 | 9.674 10.162 10.206 9.968

10| 2.980| 2.022 BY ANN 9.574 | 9.527 | 9.689 10.173 10.225 9.984
% Error 0.126 | 0.160 | 0.160 0.111 0.190 0.159

CLASSICAL| 9.700 | 9.676 | 9.847 10.336 10.386 10.150

11| 3.016 | 2.047 BY ANN 9.680 | 9.647 | 9.815 10.303 10.353 10.115
% Error 0.205 | 0.304 | 0.328 0.319 0.315 0.340

CLASSICAL| 9.534 | 9482 | 9.643 10.121 10.195 9.933

12| 2.948 | 2.000 BY ANN 9.551 | 9.501 | 9.663 10.145 10.205 9.956
% Error 0.174 | 0.197 | 0.206 0.232 0.094 0.227

CLASSICAL| 9.551 | 9.500 | 9.661 10.146 10.202 9.954

13| 2949 | 2.001 BY ANN 9.551 | 9.501 | 9.663 10.145 10.205 9.956
% Error 0.004 | 0.007 | 0.019 0.015 0.026 0.016

CLASSICAL| 9.530 | 9.478 | 9.638 10.116 10.194 9.929

14| 2923 | 1.983 BY ANN 9.529 | 9.476 | 9.637 10.115 10.188 9.928
% Error 0.013 | 0.016 | 0.015 0.014 0.055 0.015

CLASSICAL| 9.543 | 9.492 | 9.653 10.135 10.199 9.945

15| 2.947| 2.000 BY ANN 9.531 | 9.484 | 9.646 10.126 10.189 9.939
% Error 0.123 | 0.089 | 0.075 0.089 0.100 0.063
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